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Abstract 

This document describes a numerical model that was developed to study two-dimensional, 

reduced-gravity, shallow-water flows. When the dynamics of these flows is strongly non- 

linear, the flow may become hydraulically supercritical and discontinuities in the flow field 

may arise. The presence of discontinuities in the flow field requires a special numerical treat- 

ment in order to maintain both accuracy and stability in the numerically-approximated solu- 

tion. In this model, a shock-capturing scheme called the Essentially Non-Oscillatory (ENO) 

scheme is implemented. The ENO scheme is a high-order, adaptive-stencil, finite-difference, 

characteristic-based scheme for hyperbolic equations that has been applied widely to flows 

governed by the Euler equations of gas dynamics. The model described in this document 

was developed for geophysical applications, and therefore includes the effects of rotation 

(constant Coriolis parameter), forcing (time dependent and/or spatially varying), and bot- 

tom drag (linear or nonlinear). The presentation includes the mathematical formulation of 

the model as well as instructions on how to prepare and execute model runs. 
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1    Introduction 

The numerical model described in this document was developed as part of a research effort 

conducted by Roger Samelson and myself on orographically-modified winds in the coastal 

marine atmospheric boundary layer, funded by the ONR Coastal Meteorology Accelerated 

Research Initiative, grant N00014-93-1-1369. 

The model was developed to investigate hydraulically transcritical, two-dimensional, 

reduced-gravity shallow-water flows (Rogerson 1999). The dynamics of these flows is strongly 

nonlinear, and when the flow velocity exceeds the gravity-wave phase speed the flow becomes 

hydraulically supercritical and discontinuities in the flow field may arise. The presence of 

discontinuities in the flow field requires a special numerical treatment in order to main- 

tain both accuracy and stability in the numerically-approximated solution. In this model, 

the Essentially Non-Oscillatory (ENO) shock-capturing scheme is implemented. The ENO 

scheme is a high-order, adaptive-stencil, finite-difference, characteristic-based scheme for 

hyperbolic equations that has been applied widely to non-rotating flows, including, for 

example, flows governed by the 2-D Euler equations of gas dynamics. For the present appli- 

cation to the reduced-gravity shallow-water system, the effects of forcing (time dependent 

and/or spatially varying), bottom drag (linear or nonlinear), and rotation (constant Coriolis 

parameter) have been included. 

The model is designed to approximate a solution on a user-specified orthogonal curvi- 

linear grid. The original application involved channel-like domains with varying side-wall 

geometries which could be discretized onto an orthogonal curvilinear grid (using a conformal 

mapping program developed by Wilkin and modified successively by Signell, by Samelson, 

and by Rogerson). In this case, variations in the side-wall geometry can lead to hydraulic 

criticality in the two-dimensional flow. In contrast, problems in classic hydraulic flow theory 

typically involve a rectilinear channel geometry (or one-dimensional geometry) with varying 



bottom topography. The presence of bottom topography is not currently included in the 

model, but could be incorporated easily to simulate flows in which the layer interface never 

intersects the bottom. For cases in which the layer depth goes to zero, significant modifi- 

cation would be required and it is possible that another approach (i.e., using a different 

numerical scheme entirely) would be more fruitful. 

The types of boundary conditions that are currently implemented in the model reflect 

the fact that a channel geometry was used in the original application, although it is also 

possible to specify doubly-periodic boundary conditions. For the channel configuration, 

one wall of the channel may be "opened." All walled boundaries are free-slip. As with 

all numerical models, the boundary treatment is critical to the stability of the solution. 

Because the ENO scheme has high accuracy and low numerical dissipation, it is particularly 

sensitive to inappropriate and/or inaccurate boundary treatments. The presence of rotation 

in particular requires careful consideration in terms of the numerical treatment of walled 

boundaries. 

This document has been created with the hope that it will serve as a useful aid to re- 

searchers who want to use and/or modify the model. The presentation is fairly technical, in 

that it includes a complete description of the ENO algorithm and some of the mathematical 

formalism behind the scheme, as well as instructions on how to prepare and execute model 

runs. The model equations are formulated in Section 2. In Section 3, the Essentially Non- 

Oscillatory (ENO) scheme is introduced, and a detailed description of the ENO algorithm 

as it applies to the flux in a one-dimensional scalar equation is presented as an example. 

The application of the ENO algorithm to the two-dimensional shallow-water system is dis- 

cussed in Section 4. Finite-difference approximations for the non-conservative terms in the 

model equation are presented in Section 5, followed by the time-stepping scheme in Sec- 

tion 6. Boundary conditions and their implementations are presented in Section 7. The 

steps required to prepare and execute the model are outlined in Section 8.   An auxiliary 



program, swgrid.f, that can be used to generate an orthogonal curvilinear computational 

grid is described in the Appendix. 



2    Model Equations 

Consider the rotating, reduced-gravity (1-1/2 layer), shallow-water flow governed by the 

equations, 

ut + u-Vu + f(kxu)   =   -g'Vh Vpa -TB (1) 

ht + V-{uh)   =   0 (2) 

where u = (u, v) is the horizontal velocity vector, h is the depth of the layer (which is 

assumed to be nonzero), p is the density of the layer, g' = gAp/p is the reduced gravity, / 

is the Coriolis parameter, pa(x,y,t) is the imposed pressure forcing, and TB is the stress at 

the bottom of the layer. The bottom stress is typically parameterized, and in the present 

case takes the form, 

TB = pCD\u\u. 

Equations (l)-(2) are nondimensionalized using length, velocity, time, and layer depth 

scales L*,U*,t* = L*/U*, and D", respectively, to yield, 

ut + u-Vu + fo(kxu)   =   -F-2Vh-VP-^\u\u (3) 

ht + V-{uh)   =   0 (4) 

where f0 = fL*/U* is the inverse Rossby number, F~2 = g'D*/U*2 = c*2/U*2 is the 

squared inverse of the scaling Proude number, VP = (Vp/p){L*/U*2) is the nondimen- 

sional pressure gradient divided by the density of the layer, and r = CDL*/D* is the 

nondimensional drag coefficient. 

Equations (3)-(4) can be generalized to any orthogonal curvilinear coordinate system. 

If (CT?) are the coordinates in the orthogonal curvilinear system, then the change in the 

position vector x = {x,y) in the Cartesian system can be written as, 

5x = m\5C, C + rn^Srjr\ 



where mi and m2 axe the coordinate metrics given by 

mi   = 

m2   = 

eg    Keg 

or})       \drjj 

mi d£     m2 drj J 

(Batchelor 1967). It follows that the gradient of a scalar cf> is, 

the divergence of the vector v = (t>i,u2) is, 

V- v 
m\m2 [     dC, 

d{m2vi)      d{miV2) 

drj 

and the gradient of v in the direction of n is, 

n ■ Vv   =   C 

+   f] n • Vv2 — 

_           V2     (    dm\ dm,2 
n ■ vvi -\ ni — ri2 

m\m2 
Vl 

m\m2 
nv 

drj 
dmi 

drj 
-n2- 

drri2 

(5) 

(6) 

Therefore, in the (£, ^-coordinate system Equations (3)-(4) become, 

1               1                 1      / ^     * u4 H ««<: H vu„ H »timi   — wn2,J — fov = 
mi m2 mim2 

1 1 1 / N    ,     S 
vt H IMV H uu»? «™i„ - vm2c) + Jou = 

mi    s     m2 mim2 ' ; 

/it H [(m2u/i)c + (mivh)„] = 0 
mim2 

where now u and u are the velocity components in the £ and 7) directions, respectively. 

Equations (7)-(9) can be rewritten in flux form in terms of the state vector, 

(7) 

(8) 

(9) 

uh 

q = I   vh 
h 

U 
V 
h 



yielding 

where 

it + ^FtaHc + £[<?(«)], = e + r + v + M 

U2/h + F-2h2/2 
F = | UV/h 

U 

UV/h 
G = I   V2/h + F~2h2/2 

V 

are the fluxes in the C and f) directions, respectively, and 

foV 
-foU 

0 

-hP^/mi \ 
-hPr]/m2 

0        / 

-r\U\U/h2 

,   V = |   -r\U\V/h2 

0 

M = 1 
m\m2 

-aiV/h - a2U/h \ 
aiU/h - a2V/h 

(10) 

—CH2 J 

are the terms resulting from the Coriolis, pressure forcing, bottom stress, and grid-metric 

contributions, respectively. In the expression for A4, 

ax = Umin - Vm2(., a2 = Um2(. + Vmlri. 



3    The Essentially Non-Oscillatory (ENO) Scheme 

The Essentially Non-Oscillatory (ENO) scheme is a numerical method for hyperbolic con- 

servation laws of the form, 

TT- + y^    n =0     (or = r(u, x, t), a residual or forcing term) (11) 
dt     f^    oxi 

u(x,t = 0)   =   uQ{x) (12) 

where u(x,t) = («1,1*2,... ,um)T, x = (xi,x2,..., Xd)T, d is the spatial dimension of the 

problem, m is the number of independent variables, and t is time. The system is hyperbolic 

in the sense that any linear combination of the Jacobian matrices, 

for real 7j = (71,72, • • • ,7d), always, has m real eigenvalues and a complete set of eigenvec- 

tors. 

It is well known that the solution to this equation can develop discontinuities even when 

the initial condition UQ(X) is smooth. Traditional finite-difference techniques will provide 

poor numerical approximations of the solution in this case. In general, shock-capturing 

schemes aim to: 

• achieve high accuracy in regions where the solution is smooth; 

• maintain sharp profiles of discontinuities (i.e., avoid excessive numerical dissipation); 

• avoid spurious oscillations in the vicinity of discontinuities; 

• accurately represent the location and speed of discontinuities; and 

• avoid non-physical solutions (e.g., entropy-violating expansion shocks). 

The ENO scheme satisfies these criteria. In addition, the ENO scheme is globally high-order, 

losing only one order of accuracy in discontinuous regions compared to smooth regions. 



A good review of numerical methods for conservation laws can be found in the book 

by LeVeque (1990). A more complete description of the ENO scheme can be found in the 

papers by Shu and Osher (1988 and 1989), and references contained therein. 

3.1    ENO Primer 

To illustrate the fundamental principles of the ENO scheme and simplify the discussion, 

consider the one-dimensional scalar equation, 

ut + [f(u)]x = 0 (13) 

for some function f{u). 

A numerical approximation to (13) is called conservative if it is of the form, 

<+1=<-^(w-/^/2) (i4) 

where fi+l/2 = f(ui-h...,ui+k) for some l,k > 0 (LeVeque 1990). The key to shock- 

capturing schemes hinges on how the numerical fluxes at the "half" grid points, /i+i/2, are 

estimated. By using a conservative method, the Lax-Wendroff theorem guarantees that if 

the numerical scheme converges to a numerical solution, then the numerical solution does 

indeed approximate a weak solution of the partial differential equation (Lax and Wendroff 

1960). Convergence of the numerical scheme can often be proved if the scheme is total- 

variation diminishing (TVD) or total-variation bounded (TVB) (Harten 1984). The total 

variation is defined as, 

TV{u) = ^2\ui+1-Ui\ 
i 

and the scheme is termed TVD if 

TV{un+1) < TV(un) 

for all n. The scheme is termed TVB in 0 < t < T if 

TV{un) < B 



for some fixed B that depends only on TV(u°), and for all n and At such that 0 < nAt < T. 

The ENO scheme is a descendent of TVD and TVB schemes, but is unique in that it uses 

adaptive stencils to compute the numerical approximations of the flux, fi+i/2- High accuracy 

is achieved by approximating /i+1/2 and /i_i/2 to very high order in such a way that the 

difference yields a high-order estimate for the derivative df/dx (as opposed to seeking a 

high-order approximation for df/dx directly). The use of an (r + l)-point adaptive stencil 

yields (r + l)-order accuracy in smooth regions of the flow and r-order accuracy right up to 

discontinuities, and is formally r-order accurate. A high-order interpolating polynomial is 

constructed at each time step to approximate the flux from information at the surrounding 

grid points, avoiding regions where discontinuities are present. For example, to compute 

fi+1/2 using a 4-point stencil in a smooth region of the flow, the centered stencil 

fi+l/2 — f{ui-liuüui+liui+2) 

would be utilized, while in the presence of a local discontinuity, say located near a^-i, the 

stencil would be shifted to the right to obtain information from the smoother region, e.g., 

fi+l/2 = f{Ui,Ui+i,Ui+2,Ui+3). 

The fact that the scheme involves an adaptive stencil application has hindered progress 

towards a convergence theory for the ENO scheme. Nevertheless, numerical convergence 

has been demonstrated empirically in a number of challenging problems in gas dynamics 

including Riemann problems, shock-wave interactions, and shock-turbulence interactions 

(see, for example, Hannappel, Häuser and Friedrich 1995). 

To aid the stencil selection process and the construction of the interpolating polynomial, 

divided differences are computed for the flux. The divided differences of a function w = w(x) 

are defined recursively as, 

w[xi]   =   w(xi) 



w[Xi+l, . . . , Xi+k] - V)[Xi, ..., Xj+k-l] 
w[Xi,...,Xi+k\     =       

where «;[£;,..., Xj+fc] denotes the divided difference of w of order k. If to is smooth (i.e., w 

is infinitely differentiate; w € C00) in the interval [xj,x;+fc], then 

.      1 dkw(C)        ,     , , 
to[gt,...,a;t+fcJ = ^y   da.fc    '      CGFi^i+W. 

but if u; is discontinuous in the p-th derivative (0 < p < k), then 

w[xi,...,xi+k] = 0(Ax-k+*[W<P)]) 

where [w^] denotes the jump in the p-th derivative (Harten et al. 1987). Therefore, divided 

differences can be used to detect discontinuities. Now consider the function h(x) such that, 

1        rX+A.X/Z 
/(«(*))==_-/ h(C)d(. 

AX Jx-Ax/2 

It follows easily that if H is the primitive function of h, i.e., 

H{x) = f   h(Od( 
J—<x> 

then 

H(xi+1/2) = [Xl+1/2 h(()d( =   £    I*"*1'2 H0d( =   J2 {xk+1/2-xk_l/2)f(uk) 
J-°°    . k=-ooJxk~1/2 k=-oo 

and 

H(xi+1/2) - i?(Xj-l/2) = (Xi+l/2 - Zt-l/2)/(«i)- 

Therefore, the divided differences of H can be obtained directly from the divided differences 

of/, 

#[Zi-l/2>Zi-l/2+l]     =     /N 

1 
H[xi^i/2,...,Xi_1/2+k]     =      7/[«i.---,Mi+(:-l]- 

10 



3.1.1    Basic ENO-Roe Algorithm 

We seek a solution to 

ut + [/(«)]x = 0 

in which [f(u)]x is approximated via, 

-^ (/i+i/2 - /i-1/2) • 

The numerical fluxes / are computed to r-th order using the algorithm outlined below. To 

simplify the notation, we will denote the k-th divided difference of H at £$-1/2 as, 

-#»-1/2 — -fffci-l^J ■ • • i xi-l/2+k\- 

The "ENO-Roe" algorithm (Shu and Osher 1989) for ft+1/2 is: 

1. Compute the divided differences, 

H}-l/2   =   f[ui] = f{ui) 

Hi-i/2   =    j;f[ui,---,Ui+k-i],        fc = 2,...,r + l 

2. Estimate the local sign of df/du at xi+1/2 by computing the Roe speed (Roe 1981), 

f{Ui+l) ~ f(ui) 
Oj+l/2 =   

3. Let s{h) denote the starting stencil point at stage k in the selection process.  Select 

the first stencil point (k = 1) in the upwind direction, 

s(l) = / * if "i+V* - ° 
1  i + 1     otherwise 

4. At each stage thereafter, add an additional point to the stencil from the "smoother" 

region, using the difference table for the comparison; 

s(k + 1) = (  S^) ~ X      lf Hs(k)-l/2 ^ Hs{k)-l/2-l 
1   s(k) otherwise 

11 



When HKk)_1/2 > H^k)_l/2_v the starting stencil location is backed up; we add the 

point to the "left" of previous starting point. When H^k)_l/2 < H^k)_l/2_v the 

starting stencil location is unchanged; we effectively add a point to the "right-hand" 

end of the stencil. 

5. After the (r+l)-point stencil has been selected, we construct a high-order interpolating 

polynomial for the primitive function, 

QW{z)   =   Hl{l)_l/2(x-xs{l)_l/2) 

+    Hh)~y^X ~ Xs(l)-l/2)(x - 3a(l)-l/2+l) 

+   H3
s{3)_1/2{x - xs{2)_1/2){x - ss(2)-i/2+i)(z - a:a(2)-i/2+2) + • • • 

=     Hl{l)-l/2(X - ^(l)-l/2) + £ \ Hs(k)-l/2 

r+1 

E 
fc=2 

•fc-1 

JJ (x - Zs(fc-l)-l/2+a) 
.Q=0 

whose derivative is, 

d 
dx 

Q(r+1)(x) H, s(l)-l/2 

+     Hs(2)-l/2i(x ~ ^(l)-l/2) + (X- Zs(i)-l/2+l)] + • ■ • 

"fc-1      fc-1 

1/2     Y,       II      (x ~ Xs(k-l)-l/2+ß) 
a=0 ß=0,a^tß 

=    Hl(l)-l/2 + Y\ Hs(k)-1 

r+1 

E 
k=2 

The interpolating polynomial for /i+i/2 is then, 

=     -ffl(l)-l/2 

Zi+1/2 

r+1 

+     53 { iIs(fc)-l/2 
fc=2 

'fc-1     fc-1 

E       II      fe+l/2 _ *«(k-l)-l/2+/j) 
a=0 /3=0,a#/3 

(15) 

3.1.2    Entropy Fix; the ENO-LLF Algorithm 

The ENO-Roe scheme described above does admit a non-physical entropy-violating expan- 

sion shock but the problem can be easily remedied (Shu and Osher 1989).   If f'{u) does 

12 



not change sign between U{ and «j+i, then we compute the numerical flux, fi+1/2, accord- 

ing to Equation (15) in the ENO-Roe fashion. If f'(u) does change sign between m and 

«i+i, then we compute the numerical flux in a slightly different fashion based on the local 

Lax-Friedrichs flux (the "ENO-LLF" scheme) described below. 

The flux, f(u), can be split into two parts 

- f+ f(u) = f+(u) + f-(u) 

where 

with 

so that 

a = max |/'(u) I 

a       >   ° ou 

Br < 0. 
du 

The numerical flux is similarly split in the Lax-Friedrichs fashion, 

fi+1/2 = /i+1/2 + fi+1/2 

and ENO approximations are computed for each component as follows: 

1. Compute the divided differences for +H and ~H, 

±Hi-l/2    =     ~(/M±<*i+l/2«M) 2 
1 
fc'2' 

±Hi-i/2   =    T^{f[ui,---,Ui+k-i]±ai+i/2u[xi,...,Xi+k-.i]),       k = 2,...,r+l 

13 



2. Define 

a»+i/2 =     max     |/'(u)| 

3. Select the first stencil point for the + and - components in the upwind direction with 

respect to the half-grid point i + 1/2. Since 

df+ 
du 

= ö Oi. 2 «i+1/2 
"i+1/2 

du 
xi+l/2 

the first stencil points are chosen as, 

= — ö OL 2 «i+1/2 

>0 

<0 

s+(l)   =   i 

s-(l)   =   i + i 

4. Select the rest of the stencil in the ENO fashion, 

_ f ,±(fc) - 1    if ±H%{k)_l/2 >± H*^.^ 
s±(fc + l) 

^(Jfe) otherwise 

5. Form the interpolating polynomials for /^1//2 and /i+1/2 

/* i+l/2 -        äs±(l)-l/2 

r+1 r 
+     ]C \     Hs±{k)-l/2 

fc=2  ^ 

k-1     fc-1 

52      II     (^+1/2 _ xs±(k-l)-l/2+ß) 
7=0/3=0,7#/3 

(16) 

6. The numerical flux computed using the ENO-LLF scheme is then, 

/i+1/2 - fi+l/2 + fi+1/2 (17) 

To prevent entropy-violating expansion shocks in the ENO-Roe scheme, the numerical 

flux must be computed according to Equations (16)-(17) if /'(«) changes sign between m 

and Ui+i, and not in accordance with Equation (15). 

14 



Since the entropy fix for the ENO-Roe scheme requires the implementation of an addi- 

tional scheme, ENO-LLF, one might wonder if it would be better to compute all of the fluxes 

using the ENO-LLF scheme in the first place. Employing the ENO-LLF scheme globally 

would certainly be simpler (algorithmically) than ENO-Roe with entropy fix, and in the 

shallow-water model the user has the option to select either scheme. However, the numerical 

dissipation associated with the ENO-Roe scheme is less than that of ENO-LLF (Shu and 

Osher 1989), so there is less shock smearing and better overall accuracy with ENO-Roe. 

In general, I have found the ENO-Roe (with entropy fix) solutions to be superior to those 

generated by ENO-LLF. 

3.1.3    Hybrid ENO; Biased Stencil Selection 

Adaptive stencil selection is the key feature of the ENO scheme. It allows an interpolating 

polynomial to be constructed using a stencil that avoids discontinuous regions of the flow. 

It is inevitable that in this process linearly unstable stencils will be selected. In general, 

however, the selection of linearly unstable stencils does not lead to numerical instability 

since rapid stencil switching is often observed (Harten et al. 1987). However, in smooth 

regions of the flow, the use of linearly unstable stencils (and the rapid stencil switching that 

accompanies it) can degrade the convergence rate of the solution (Rogerson and Meiburg 

1990). The error reduction during mesh refinement is not uniform and in some cases grid 

refinement can produce an increase in the truncation error. This degeneration in accuracy 

can be remedied by using fixed linearly stable stencils in smooth regions of the solution and 

adaptive stencils where strong gradients are present. A simple modification to the basic 

ENO algorithm combines the use of fixed and adaptive stencils, creating a "hybrid" ENO 

scheme that restores the desired accuracy (Shu 1990). In the stencil selection process (item 

4 in ENO-Roe and ENO-LLF algorithms) we simply replace, 

S(k + 1) = I   "if I ~ l      lf  **Z(k)-l,2 * Hs(k)-l/2-l 
I   s{k) otherwise 

15 



with 
if s(k) > c(k) then 

S(k + 1) = {   S{k) ~ '      ^  2ir«(*>-l/2 ^ F^)-l/2-l 
| s(fc) otherwise 

else 
(18) 

s(k + 1) = / S(fc) ~ *    lf iJ^)-1/2 - ^-W-i/a-i 
1   s(&) otherwise 

where c(fe) is the leftmost grid point in the centered stencil.   The weighting factor of 2 

in Equation (18) is used for the reasons provided by Shu (1990).  Restated, the modified 

algorithm is, 

if the stencil is to the right of the centered stencil [i.e., s(k) > c(k)] then 
favor adding a point on the left [i.e., s(k + 1) = s(k) — 1] 

else 
favor adding a point on the right [i.e., s(k + 1) = s(k)]. 

The modified algorithm biases the stencil selection towards the linearly stable centered 

stencil in smooth regions where H^k)_1/2 and ^(fc)_1/2_1 are the same order of magnitude. 

3.1.4    Implementation Issues 

Notice that on an equally-spaced grid, Equation (15) becomes, 

r+l   f 
fi+1/2 = Hl(l)-l/2 + Y2{ Hs(k)-1/2(^X) 

k=2 

k—1      k—1 

£ n (i-s{k-i)+i-ß) 
a=0 ß=0,ajtß 

■   (19) 

Therefore, if we compute the undivided differences, 

«i-l/2     =     /(«*) 

ik-1 njk       1jk~ 1 1tK 
Hi-l/2     -     ni+l/2      ni-l/2> fc = 2,...,r + l 

(19) becomes, 

r+l   ( 

fi+1/2 - ^s(l)-l/2 + z2 \ Hs(*)-l/2 
k=2  \ 

Since the coefficients in the summation, 

fc-i    Jfc-i 
<£ n (i-s(k-i)+i-ß) 
a=0 ß=Q,a-£ß 

k-1      fc-1 

Y,     II    (i-s(k-l) + l-ß),       k = 2,...,r + l 
a=0ß-0,aj:ß 

(20) 
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depend on (i — s(k)) (the difference between the grid point in question and the left-most 

stencil point) and not on i itself, the set of possible coefficients can be precomputed for use 

in Equation (20). A similar simplification can be applied to the split numerical fluxes in 

the ENO-LLF algorithm (Equation (16)). 

When the grid is not uniform, we make a change of variables, e.g., x -* C, and reformulate 

the governing equation, 

«* + ^[/(«)]c = o Tib 

where m = dx/d( is the grid metric. The approximation for the flux, fi+1/2, then proceeds 

on the C grid for which A( is constant. 

3.1.5    Implemented ENO Algorithm 

The ENO algorithm that is implemented in the model is a hybrid ENO-Roe scheme with 

the "entropy fix" (Shu and Osher 1988; Shu and Osher 1989; Rogerson and Meiburg 1990; 

Shu 1990). Below, we recapitulate the algorithm for clarity as it applies to the 1-D scalar 

equation (13). 

1. Compute the undivided differences for / and u, 

«i-l/2   =   /M = /(0 

^i-l/2     =    u\xi] = u(xi) 

Ki-l/2    =     %f[Ui' • • • ' ui+k-l\ 

Ui-i/2   =   ^u[xi,...,xi+k_i],       k = 2,...,r + l 

2. Compute the Roe speed, 

f{Ui+l) ~f{ui) 
ai+l/2 — 

and 

Ui+l — Ui 

<*i+i/2=     max.   |/'(u)| 
Ui<U<Ui+l 
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3. Form the undivided difference tables for the split local Lax-Friedrichs flux, 

±^-l/2 = ^tl/2 ± «i+1/2 z£i/2)> fc = 1, • • ■, r + 1 

4. If f'(u) does not change sign between «j and «j+i, then construct /j+i/2 using the 

ENO-Roe algorithm. 

• Select the first stencil point in the upwind direction, 

ft if Oi+i/2 > 0 
I i + 1     otherwise 

• Select the remaining stencil points. Bias the stencil selection towards the linearly 

stable centered stencil, c(fc), in smooth regions. 

if s(k) > c(k) then 
_ f s(k)-l     if 2^(fc)_1/2>^(fc)_1/2_x 

1   s(&) otherwise 
else 

s(k + 1) = { S{k) ~ l    if ^W"1/2 - ^-Vi/a-i 
I   s(fc) otherwise 

Compute the interpolating polynomial for /j+i/2, 

/i+l/2     =    ^s(l)-l/2 

r+1 

+ E « fe s(fc)-l/2 
fc=2 

ifc—1     fc—1 

£     I]    (i-s(fc-l) + l-)9) 
a=0 /3=0,a#/3 

5. If /'(u) changes sign between m and ui+i, then construct fi+i/2 using the ENO-LLF 

algorithm. 

• Select the first stencil point in the upwind direction, 

s+(l)    =   % 

s-(l)    =   i + 1 
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Select the remaining stencil points, s+(k) and s+(k), in the hybrid ENO fashion, 

iis±(k) >c(k) then 
s 
s±{k) 

s±(k + 1) = <J   S±^ ~X      lf  2(±^(fc)-l/2) ^± Ws(fc)-l/2-l Ls{k)-ll2> 
otherwise 

else 

s±(k +1) = S   (k)-l      if     fts(fe)_1/2 > 2(   ^(fc),!^-!) 
s±{k) 

ls(k)-l/2 
otherwise 

Form the interpolating polynomials for ff^^ and /f+i/2' 

+1/2     -        rts±(l)-l/2 

r+1 

E 
fc=2 

+     Z2\    ^s±(fc)-l/2 x: n (i_^(fc-i)+i-/3) 
Q=0 ß=0,a^ß 

• Sum the split fluxes to obtain the interpolating polynomial for the numerical 

flux, 

fi+l/2 = /i+i/2 + fi+l/2 

6. Repeat the previous steps to compute /j_i/2 and approximate (df/du)i as, 

du — ^7(^+1/2 _ /*—1/2) 

3.2    Time-stepping Scheme 

ENO spatial approximations are typically paired with TVD time-stepping schemes (see Shu 

and Osher (1988) for background). Shu and Osher (1988) formulated several Runge-Kutta 

time-stepping schemes that have optimal (i.e., large) CFL restrictions. For the equation, 

the 2nd-order and 3rd-order Runge-Kutta methods are, 

u 

vT 

n+l 

=   un + AtL{un) 

=   \un + \ua + \&tL{ua) 

(21) 

(22) 
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and 

ua   =   un + AtL(un) (23) 

ub   =    L» + ina + -AtL{ua) (24) 
4 4 4 

un+l     =     lun+2u6 + |AtL(u6)_ (25) 

The theoretical CFL coefficient for both schemes is 1. In practice, the recommended maxi- 

mal CFL coefficient is 0.6 when L(u) is approximated with an ENO algorithm (C.-W. Shu, 

personal communication), i.e., 

^max|/'(«)|<0.6. (26) 
Ax   « 
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4    ENO Scheme for the Shallow Water System 

Reconsider the shallow-water system in flux form on a curvilinear grid (see Equation (10), 

Section 2), 

qt + ^-[F(q)]c + -±-[G(q)]ri = Q 

where 

mi 

9 = 

m2 
(27) 

/ uh 

F = 

V 
U2/h + F~2h2/2 

UV/h 
U 

vh 
h 

UV/h 
G = |   V2/h + F~2h2/2 

V 

and Q = C+V+'D+Ai is the sum of all of the terms on the right-hand side of Equation (10). 

For systems of equations, the ENO algorithm is applied to each local characteristic field, 

not to each state variable.  To illustrate how the fluxes in the £ direction are computed, 

consider the one-dimensional conservation equation, 

1t + —[F(q)]( = 0 (28) 

or 

where 

1     A qt + —Aqc = 0 

2u   0   -u2 + F~2h 
-uv 
0 

(29) 

The matrix A has eigenvalues and left and right eigenvectors, 

A«    =   tx 
A(2)    =   u + c 
A(3)    =   u-c 

J«    = (    o -v     ) 

i<2>  = -i  ( -i 0 2c 

2c 

U 

j(3)     = i     (     -1     0     U + C    ) 

r« = ( 0 1 0 )T 

r(2) = ( u + c v 1 )r 

r(3)    =    (   u-c   v   1   f 

where c = y/Fr 
2h. Equation (29) can be projected onto the eigenspace via 

S~lqt + —{S~1AS)S-1qc = 0 
mi 
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where 

S = ( r«   r(2)   r(3) ) , 7-1 

yielding, 

where 

Rt + —ARC = 0 
mi 

A« 
# = I   « + 2c   I , A = S"1 AS = I A<2> 

A(3) 

As in the 1-D scalar case (see Equation (14), Section 3.1), the spatial derivative in 

Equation (28) is computed using the simple difference formula, 

dF(q) 

d( 
.   {Fi+i/2 - Fi-lß) _ ä £ 
_ Jfi+l/2 ~ "^ 2-1/2 

(Ci+1/2 _ Ci-1/2) 

where ^+1/2 and ^"j_i/2 are high-order approximations to the flux obtained from an adap- 

tive stencil that avoids discontinuous regions of the flow. To compute Fi+x/2, the algorithm 

outlined in Section 3.1.5 for the 1-D scalar case is generalized. First, undivided difference 

tables are computed for each component of the flux and the state vector, as in step 1 in 

Section 3.1.5, i.e., 

^21-i/2   =   F[Qi\ 

Wi-1/2    =   9&] 

1 
2-1/2     —     fcT \Hii ■■•■> Vi+k-li ^■i-1/2    —    T^lQii ■■•■> Qi+k- 

Ui-l/2    =    J.<l[(u---,(i+k-i},        fc = 2,...,r + l. 

The difference tables are then projected onto the eigenspace using the left eigenvectors of 

A, 

fii-l/2 = (S     )i+l/2<H-i-l/2- 

Only the portion of the difference table that might be utilized in the approximation for 

Fi+1/2 is projected onto the eigenspace (see Figure 1). For each projected component, p, 
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k=4:d3f/dx3 

2eiA„2 k=3: dzf/dx 

k=2: df/dx 

k=l:f 

r 
H i-7/2 

H; -5/2 /- 
/~ 

H i-5/2 

H i-3/2 k 

H i-3/2 

H i-3/2 

H i—1/2 :/ 

^J 

H i—1/2 

H i—1/2 

H i—1/2 

H i+1/2 

"% 

H: i+1/2 

N      2 
H i+1/2 

"i+1/2 
V \i 

"N 

i-3      i-2      i-1        i 

i+ 

i+1      i+2      i+3     i+4 

/2 

Figure 1: The portion of the difference table that could possibly be utilized in the approx- 
imation of -FVt-l/2- 
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an appropriate stencil is selected in the ENO fashion and the interpolating polynomial, 

-^.+1/2' is formed, as outlined in steps 2-5 in Section 3.1.5. The interpolating polynomials 

in the eigenspace are then projected back using the right eigenvectors of A, i.e., 

Fi+l/2 = ^+1/2^+1/2- 

The Roe speeds in this case are the eigenvalues, 

„(P)     _ \(P) „ _ 1  o S ai+l/2 ~ Ai+l/2' P ~ X' Z' ° 

and the local Lax-Friedrichs estimate is, 

.a«     =      max     A«(9),       p = l,2,3. 

Since the Roe speeds and projection matrices are evaluated at the half-grid points, a suitable 

average must be computed for u, v, and h. The appropriate averages are the Roe-averaged 

quantities (Roe 1981) given by, 

Ui+1/2 "      Vhl+^h-^ 

Vi+1/2   ~ Vhi + V^Ti 

hi+i/2   —   ^(^i + ^i+i)- 

The ENO scheme is easily generalized to multi-dimensions since the approximations to 

the fluxes F(q) and G(q) are computed separately. Equation (27) is therefore approximated 

as 

qt = -±-(Fi+1/2d - Fi.1/2d) - ^(Öy+iya - Öy-1/2) + Qir (30) 

The computation of Gijj+1/2 is analogous to that of Fi+l/2,j-  For completeness, it is 

noted that the matrix 

„ _      ( v    u —uv 
B=°!fL=\   0   2v   -v2 + F~2h 

d* 0    1 0 
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has eigenvalues and left and right eigenvectors, 

\W   =   v              Z(1)    =             (   1     0      -u ) r« = ( l 0 0 f 
A(2)    =   v + c        t(2)   =   _i_    (   o   _! y_c ) r(2) = ( u v + c 1 )T 

A(3)   =   v_c        j(3)    =       i     (   o   -1 ü + c ) rP) = ( u v-c 1 )r. 
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5    The "Right-hand Side" 

This section describes the finite-difference approximations for the non-conservative terms 

on the right-hand side of Equation (10), 

qt + —[F(g)]c + +-[G{q)]n = C + V + V + M 

where ,       . , 
/ uh \ U 

\ 

vh     =     V 
h \  h 

and C, V, T>, and M represent the Coriolis, pressure forcing, bottom stress, and grid-metric 

contributions, respectively. The approximations for C, V, V, and M are all straightfor- 

ward. 

5.1 Coriolis Term 

The approximation for the Coriolis term is simply, 

5.2 Pressure Forcing Term 

The pressure forcing term is, 
/ -hPJrm 

V =      -hPr,/m2 

V     o 
The model is currently set up to read from an input file the steady component of the 

(nondimensional) pressure-gradient forcing, 

VPo = ( i aP°(C,»?)   i dP°((,y)\ 
\mi       d(      ' m2      drj      J 

along with the initial flow fields. If there is a time-dependent component to the pressure 

gradient, 

mi        dQ       ' m2       drj 
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it should be specified in subroutine Forcing.  (In the current version, VP' corresponds 

to a propagating low-pressure anomaly.) The approximation for the pressure term is then 

simply, 
( -h(P% + P£)/mi \ 

-h(P°+P^)/m2 

0 

v 

y 

5.3    Bottom Stress Term 

The bottom stress term is, 

V 
-r\U\U/h2 

-r\U\V/h2 

0 

where r = CDL*/D* is the nondimensional drag coefficient. The appropriate formula for 

CD is, of course, application specific. For the original application to the marine atmospheric 

boundary layer flow, for example, two formulas for CD for the air-sea interface were coded. 

The first is the 10-m neutral drag coefficient given by Large and Pond (1981), 

10
3
CD 

1.14 uio < 10 m s-1 

0.49 + 0.065tt10   ttio > 10 m s-1. 

The second is the drag coefficient obtained from the Coastal Waves 96 field experiment 

(Edwards and Rogerson, in preparation), 

103CD = 
2.43 - 0.261uio   «io < 6.1 m s -l 

^ 0.44 + 0.065uio   «io > 6.1 m s_1. 

In both cases, the 10-m winds in the formula, uio, must be related to the model's nondi- 

mensional layer-averaged wind speed, |u|. This relation is currently specified as, 

«io = 0.75|u|CT. 

Note that, to obtain the nondimensional drag coefficient, r, the length, velocity, and depth 

scales (L*, U*, and D*) must be specified as well. 
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A linear bottom stress may also be modeled. In this case, 

T> 

where f is a (constant) nondimensional linear drag coefficient provided as model input. 

5.4    Grid Metric Term 

The grid metric term is, 

/ -aiV/h - a2U/h \ 
M = ——\    alU/h-a2V/h mim2 y _a2 J 

where 

ai = Umiv - Vm2(, a2 = Um2( + Vm\v. 

The metric derivatives, 
dm\ dm2 

are computed during the initialization phase of the model using simple first-order differences. 

The approximation for Mij during the model integration follows directly from the algebraic 

expression above. 
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6    Time-stepping Scheme 

The numerical solution to 

qt = L(q) = ~[F{Q)k ~ ^G^v + Q (31) 

is advanced in time with a TVD Runge-Kutta scheme (see Section 3.1 for the definition of 

TVD). In the shallow-water model, the user can specify either 2nd-order or 3rd-order TVD 

Runge-Kutta time-stepping in the form, 

qa   =   qn + AtL(qn) (32) 

qn+l    =    \qn+ \qa+ \ML{qa) (33) 

or 

q«   =   qn + AtL{qn) (34) 

qb   =    \qn+ \qa+ \ML{qa) (35) 

qn+1   =   \qn+ \qb+ \&tL{qb) (36) 

respectively. As mentioned in Section 3.2, the theoretical CFL coefficient for both schemes 

is 1. In practice, however, the recommended maximal CFL coefficient is 0.6, i.e., 

At max f-±-\F'(q)\ + -±-\G'(q)\) < 0.6 (37) 
q    \miAQ m2&rj J 

when L{u) is approximated with an ENO algorithm (C.-W. Shu, personal communication). 

The use of lower CFL coefficients (e.g., 0.1 or 0.2) is frequently quoted in the literature as 

well. For the shallow-water model, I have typically selected CFL coefficients in the range 

0.4-0.5 and would categorize the use of CFL coefficients in the range 0.1-0.2 as conservative. 
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7    Boundary Conditions 

The types of boundary conditions that are currently implemented in the model correspond 

to two basic geometries: a channel-like domain and a doubly-periodic domain. For the 

channel configuration, the along-channel direction is assumed to be the 77 direction. In the 

following discussion, the 77 direction (or y direction in the rectilinear case) is also referred to 

as the north-south direction, while the C (or x) direction is associated with the east-west 

direction. The user currently has the following options with regard to boundary conditions: 

C (or x) direction 77 (or y) direction 

• periodic • periodic 

• east wall/west wall • open (north and south) 

• east wall/west open 

Free-slip no-normal-flow boundary conditions are applied at the walls. Gravity-wave radi- 

ation is approximated at the open boundaries. 

In general, boundary conditions can be treated in one of two ways; (i) one can appro- 

priately assign values to points "outside" the computational domain and apply the same 

algorithm used in the interior, or (ii) one can apply a different algorithm at the boundary. 

The treatment for walled boundaries in a rotating flow follows the second approach, while 

the others use the first approach. Recall that the r-th order ENO scheme requires an r + 1 

adaptive stencil, so to follow the first approach r 4- 1 points outside the domain must be 

assigned. 

In the discussion that follows, consider a computational grid that is discretized into 

M x N grid points, 

Ci, t = 0,...,M-l 

Vj, j = 0,...,N-l. 

The western and eastern boundaries are located at Co and CM-I, respectively. The southern 
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and northern boundaries are located at T?O and 77^-1, respectively. 

7.1 Periodic BCs 

The implementation of periodic boundary conditions is trivial. In the 77 direction, for 

example, we simply set 

Q-j   =   QN-i 

qN-i+j    =   9j_i,        for j = 1,..., r + 1. 

7.2 Radiation BCs 

Radiation boundary conditions are easily implemented in the model since the ENO scheme 

is a characteristic-based scheme. In the eigenspace, the sign of the eigenvalue indicates 

the direction of wave propagation along the characteristic. When the wave propagation is 

directed out of the domain, the radiation treatment calls for extrapolation of the Riemann 

invariant to the grid points "outside" the domain. When the wave propagation is directed 

into the domain, the value of the Riemann invariant outside the domain is prescribed. In 

the current model implementation, the prescribed values for the incoming waves are the 

initial conditions along the boundary. 

In the 77 direction, for example, we obtain the Riemann invariants by projecting q using 

the left eigenvectors of B = dG/dq, i.e., 

/ 1      0 -u \ 

n = P~lq, 0     h     -k(v-c) 

The eigenvalues of B, 

(\(l\\(>2\\W) = (v,v + c,v-c) 

reveal the direction of wave propagation at the northern and southern boundaries and 

determine how the value of the Riemann invariants outside the domain will be set. At the 
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southern boundary (at grid point j = 0), for example, the algorithm for the p-th Riemann 

invariant is, 

if A(p) > 0 then 
-RPHri-j, t) = 72>)(77o, t = 0), j = 1,..., r + 1 

else 
TZ^(v-j,t) = ^-(p)(%,t), j = 1,... ,r + 1. 

The value of the state vector outside the domain is then set by projecting back to physical 

space via the right eigenvectors of B, i.e., 

q = pn, 

7.3 Walled BCs for Non-rotating Flows 

In the absence of rotation, u = 0 implies /ic = 0 and vc = 0 (see Equation (7)). Therefore 

the no-normal-fiow condition at the western boundary (grid point i = 0), for example, can 

be satisfied by simply setting, 

UQ   =   0,       and 

U-i      =      —Uj 

V_i      =     Vi 

h-i    =    /ij)        for i = 1, ...,r+ 1. 

In this scenario, the points outside the domain are typically referred to as image points or 

ghost points. 

7.4 Walled BCs for Rotating Flows 

While the use of ghost points works well in the non-rotating case, an alternative approach 

is necessary when rotation is present. In rotating flows, u = 0 implies 
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Even though we could still anti-image u at the wall (e.g., u-i = —Ui), we do not know the 

functional form of h (or u), so we cannot effectively assign values to h and v at the ghost 

points that would maintain the geostrophic relationship to a high order of accuracy. Ex- 

trapolation from the interior to the ghost points was tested (up to 4th-order extrapolation), 

but a mismatch in the truncation error between the ghost point and the wall point resulted 

in an error in the flux at the wall that eventually contaminated the numerical solution. For 

rotating flows, we have not found a satisfactory method to update the flow field at the wall 

using ghost points. Instead, we have implemented a boundary treatment that locally solves 

a Riemann problem to update the grid points at the wall using only interior information. 

Consider the model equations (see Equation (10)) rewritten as, 

where 

Uli 

Q = -—[G{q)}n + C + T + V + M. 
ni2 

Applying the projection matrix to the system, i.e., 

S-lqt + ^-(S-1AS)S-1qc = S^Q 

{      0   1 -v \ 

mi 

A     dF 
dq 

yields the characteristic form, 

To   0   -£(u-c) 

Rt + —ARr = Q 
mi 

where 
u 

R u + 2c   I , 
u — 2c 

A = u + c 
u — c 
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and 

Q = 

(      Q(2)-,Q(3)      N 

Q(1)-(n-c)Q(3) 

Vs(1)-(.+c)s(3); 
(see Section 4). Since u = 0 at a wall, we have 

m .(i) _ QW 

7(2) ci^2)   =  QW W + —"c 

Jjjs> _-Lj?<8>     =    g(3)_ 
^       mi   ^ 

Note that since R^ = —R® when u = 0, the flow at the wall can be obtained from the 

interior flow fields, and no information outside the domain is necessary.   For the eastern 

wall at C = CM-I, we solve for Ä(1) and i?(2); for the western wall at ( = Co, we solve for 

RW and R&. 

Consider the wall at the eastern boundary, C = CM-I, which we now denote by Cw The 

characteristic quantities at the wall at time tn, WlQ and ^R^, are computed by locating 

the characteristic that intersects the wall at the required time level, as depicted in Figure 2. 

(The vector-component index has been moved to the left of the vector variable for notational 

clarity.) The characteristic quantities at the wall are advanced in time in a manner that is 

consistent with the time-stepping scheme used in the interior. For example, when the 3rd- 

order TVD Runge-Kutta is used in the interior (see Section 6), the characteristic quantities 

at the wall are advanced according to, 

WiJl   =   ^R^ + At^Ql 

mRb  = {1)K + f ((1)« +(1) Ql) 
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At 
WRI  =  <2^ + f ((2)Q£+(2)<%) 

(It is easily verified that this form of the Runge-Kutta is equivalent to that defined by 

Equations (34)-(36).) The computation of ^Rw involves the evaluation of ^R* =W !?((*). 

Here £, is the interior location of the characteristic that intersects the wall at the next partial 

time step (see Figure 2) and is given by, 

a = c«-—Ate* 
mi 

Ca   -   c — — (cn+ca) 
^*    ~   *°     mi 4 [ w      w> 

l_At 
mi  6 C*      —      ^>V)         a   \CW + C-U)    '   ^cw 

Four-point Lagrange interpolation is then used to evaluate ^R* from ^Rw, ^Rw-i, 

WRW-2, and WRW-Z. The new values of R are projected back using the right eigenvectors 

of A = ^ to update the physical flow variables q. 

Since the values at the wall are updated by this alternative method, the flux at the half- 

grid point adjacent to the wall does not have the same truncation error as fluxes computed at 

points farther in the interior using the ENO algorithm, and therefore high-order accuracy 

of the derivative is not guaranteed. To help alleviate this slight mismatch, the first two 

interior points adjacent to the wall are weakly smoothed after the flow has been advanced 

to the new time level, 

n+1 = s^w-i-l + s2Qw-i + s3<lw-i+l for i = 1 2 
"-* Si +32 +53 

^w—i 

For the original application of the model, I typically used the smoothing coefficients, 

(si,s2,s3) = (1,38,1). 
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Sw-1 ^>* ^ w 

r      ra      r 

Figure 2: Schematic of the time advancement of the Riemann invariant along the eastern 
wall, (1).R™, and into the wall from the interior, (2)-R^, at each step in the 3rd-order Runge- 
Kutta. 
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8    Model Preparation and Execution 

In this section, instructions are provided on how to prepare and execute model runs. In the 

discussion that follows, the reader may find it helpful to refer to the source code since it 

contains comments as well. 

The model code is written in Fortran 77 and uses C-directives (i.e., #def ine and #if def 

constructs) to organize the source code corresponding to various model options. The source 

code is divided into four files: two header files, enores.h and gpath.h, a common file, 

enoswcom.f, and the main program, enosw.F. 

8.1    Header File enores.h 

Within the header file enores .h, the user must set the parameter specifications for the grid 

size and the numerical accuracy of the scheme. 

• Ql specifies the spatial order of accuracy for the ENO scheme. The ENO scheme is 

intended to be a high-order numerical scheme. For instance, one would not specify 

Ql=l (specifying a 2-point stencil) since this would greatly restrict the stencil selection 

process which forms the cornerstone of the ENO algorithm. The setting Ql=3 (4-point 

stencil) is more typical. 

• Q2 specifies the temporal order of accuracy for the Runge-Kutta scheme. Runge- 

Kutta schemes for Q2=2 and Q2=3 are implemented (see Equations (32)-(33) and 

Equations (34)-(36)). 

• M and N specify the grid size. 

• IRSIZ=2*M*N currently specifies the record length for the direct-access unformatted 

(binary) I/O of one double-precision MxN model data field. 
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8.2 Header File gpath. h 

Within the header file gpath.h, the user must provide information regarding the grid met- 

rics. If the grid is rectilinear with constant grid spacing in the x (= C) and V (= v) directions, 

then Ax and Ay need to be provided by setting the variables dxO and dyO, respectively, 

e.g., 

dxO =0.1 
dyO = 0.1 

The variable gpath in this case is inactive and is used only in the creation of a log file at 

the end of the model run (see below). 

If a more general orthogonal curvilinear grid is to be used, then the character variable 

gpath specifies the path to the grid metric data. The grid metric data are expected in a 

direct-access unformatted (binary) file called swgrid.met, in record 1. The read statement 

within subroutine Init of enosw.F is, 

c * Get grid metrics 
open(unit=10,file=gpath(1:lnblnk(gpath))//'swgrid.met', 

form='unformatted',access='direct',recl=2*IRSIZ,status='old') 
read(10,rec=l)   ((hl(i,j), h2(i,j).    i=0,M-l),    j=0,N-l) 
close(10) 

in which the arrays hl(i,j) and h2(i, j) store the value of the grid metrics mi and m2 

(see Equations (5)-(6)). 

8.3 Common File enoswcom.f 

The file enoswcom.f defines the common blocks and contains all of the C-directives con- 

trolling the various model options, described below. The user sets the various C-directives 

by un-commenting the #def ine statements corresponding to the desired options and com- 

menting out the others. 

• ENO algorithm. As discussed in Section 3.1, the Hybrid ENO-Roe algorithm is the 

recommended algorithm. Therefore, the recommended settings are 
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#define HYBRID 
#define ROE 

The Hybrid ENO-LLF algorithm might also be considered, 

#define HYBRID 
#define LLF 

but in my experience, the ENO-Roe solutions have been superior to those produced 

using ENO-LLF. 

• Computational grid type. If the grid is uniform, un-comment the statement, 

' #define UNIGRID 

When UNIGRID is "on", the grid spacing must be specified in the header file gpath.h 

(see above). If the grid is not uniform, it is expected that the grid-metric input file 

can be found in the location indicated within gpath.h (see above). 

• Bottom stress parameterization. A linear bottom stress is selected by turning on 

LSTRESS. If LSTRESS is on, the linear drag coefficient r will be taken from the pa- 

rameter file enosw.parms (see below). At present, two nonlinear drag coefficients are 

coded. If BSTRESS is on, the drag coefficient derived by Large and Pond will be used; 

if CWSTRESS is on, the formula derived from the Coastal Waves 96 data will be used. 

(See Section 5.) 

• Forcing. During the initialization phase of the model, the steady component of the 

forcing field (see Section 5) is read from the input file enosw_in.dat, described below. 

If the C-directive STDYFORC is on, the forcing is assumed to be steady (i.e., the steady 

component is the total field). 
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If there is a time-dependent component, it should be coded in subroutine Forcing of 

enosw.F and the C-directive STDYFORC should be turned off. In the original applica- 

tion of the model, time-dependent forcing was used and the computational grid was 

curvilinear. The time-dependent pressure gradient forcing was defined on the x-y grid 

and then mapped to the £-77 grid. Therefore in the current version, if STDYFORC is 

on and UNIGRID is off, the program will attempt to read the curvilinear grid points 

and the (x,y)-to-((,eta) transformation matrix (see Section 8.7) in subroutine Init 

of enosw.F with the statements, 

c * Get the grid for the HARD-CODED pressure forcing function 
open(unit=10,file=gpath(l:lnblnk(gpath))//'swgrid.pts', 

form='unformatted',status='old') 
read(lO)   ((x(i,j). y(i.j).    i=0,M-l),    j=0,N-l) 
close(lO) 

c * Get the  (x,y)->(zeta,eta) mapping matrix to map grad(P) 
open(unit=10,file=gpath(l:lnblnk(gpath))//'swgrid.map', 

form='unformatted',access='direct'Jrecl=4*IRSIZ,status='old') 
read(10,rec=2)   ((rotilKi, j) ,rotil2(i, j) , 

roti21(i,j),roti22(i,j),i=0,M-l), j=0,N-l) 
close(lO) 

Boundary conditions. A number of boundary conditions have been implemented. 

Refer to Section 7 for a complete description. For example, to specify a periodic 

channel in a rotating system, the C-directives should be turned on and off as, 

c#define XPERIODIC 
c#define EastGHOST 
c#define WestGHOST 
#define EastWALL 
#define WestWALL 
c#define WestCHAR 
#define YPERIODIC 
c#define YCHAR 
c#define YORLANSKI 

For a channel in a non-rotating system with radiation conditions at the channel ends, 

the settings would be, 
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c#define XPERIODIC 
«define EastGHOST 
«define WestGHQST 
c#define EastWALL 
c#define WestWALL 
c#define WestCHAR 
c#define YPERIODIC 
«define YCHAR 
c#define YORLANSKI 

Note that the Orlanski radiation treatment is implemented for comparative purposes 

only. The YCHAR option should be used for radiation boundary conditions. 

• Smoothing for EastWALL or WestWALL. 

If EastWALL or WestWALL is on, the C-directive SMOOTHI should also be on (see 

Section 7). The smoothing coefficients are provided in the input parameter file 

enosw.parms, described below. 

8.4    Initial Condition Data File enosw_in.dat 

It is assumed that the initial flow fields (i.e., the flow velocities, u and v, and the layer 

thickness h) and the steady component of the pressure-gradient forcing (i.e., VP°) reside in 

a direct-access unformatted file called enosw_in.dat. The read statement within subroutine 

Init of enosw.F is, 

c * Get initial u,v,h, and forcing fields 
open(unit=10,file='enosw_in.dat',form='unformatted', 

access='direct',recl=5*IRSIZ,status='old') 
read(lO)   ((u(i,j,0),v(i,j,0),h(i,j,0),pxfO(i,j),pyfO(i,j>» 

i=0,M-l),  j=0,N-l) 

in which the following correspondence is made, 

u(i,j»0)    <_   u{Q,r]j,t = 0) 

v(i,j,0)    <-   v(Ct,»7i,* = 0) 

h(i,j,0)    <-   Ä(C»>»7i>* = 0) 
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l ap°(C,v) 

pyfOd.j)    <-    ——^— 

After reading the initial flow fields, the variables u(,,) and v(,,) are reassigned to hold 

the flux variables U = uh and V — vh, respectively. 

8.5    Model Parameter File enosw.parms 

A run-time parameter file, enosw.parms, is also supplied to the model. An example of this 

ASCII file is shown below, 

10.  10.  500. L* (km), U* (m/s), D* (m) 
0.1 1.0 f0=l/Rossby=fL/U, Fr-2=l/(Froude~2) 
0.0 r.linear (ignored if BSTRESS/CWSTRESS is on) 
0.01 dt 
0. 200.  50. tstart,  tfinal, tdump 
1. 38.   1. smoothing coefficients  (sl,s2,s3) 

• Line 1 specifies the length, velocity and depth scales that will be used in the hard- 

coded formulas that parameterize the nonlinear bottom stress in subroutine Friction 

when either BSTRESS or CWSTRESS is on (see Section 5). 

• Line 2 specifies the inverse Rossby number, f0 = fL*/U*, and scaling inverse-squared 

Proude number, F~2 = g'D*/U*2 (see Section 2). 

• Line 3 specifies the linear (nondimensional) drag coefficient if the C-directive LSTRESS 

is on. If a nonlinear bulk formula is specified (i.e., C-directive BSTRESS or CWSTRESS 

is on), then the velocity-dependent value for the drag coefficient is hard-coded in 

subroutine Friction and the value of the linear drag coefficient in enosw.parms is 

ignored (see Section 5). 

• Line 4 specifies the nondimensional time step, At (see Section 6). 
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• Line 5 specifies the time associated with the beginning of the simulation (tstart), 

the time associated with the end of the simulation (tf inal), and the time interval at 

which the model data will be output (tdump). 

• Line 6 specifies the smoothing coefficients that are required when characteristic-based 

walled boundary conditions are in effect (C-directive East WALL and/or WestWALL) (see 

Section 7). 

8.6 Execution 

To conduct model runs, 

1. Select/generate a computational grid and edit gpath.h appropriately. 

2. Set the parameters in enores.h. 

3. Set the C-directives that control the model options in enosw.parms. 

4. Generate enosw_in.dat, the initial-condition data file. 

5. Edit enosw.parms as necessary. 

6. Make enosw. 

7. Execute enosw. (There are no command-line arguments.) 

8.7 Output files 

The executable, enosw, generates the output files, u.dat, v.dat, and h.dat, containing the 

data for u, v, and h, respectively. If the C-directive STDYFORC is off, two additional out- 

put files, px.dat and py.dat, are created for the time-dependent pressure-gradient forcing 

field. Each file is a direct-access unformatted file. For example, u.dat is opened with the 

statement, 

open(unit=20,file='u.dat',form='unformatted', 
access='direct',recl=IRSIZ) 
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The initial data are placed in record 1, and the remaining records correspond to time tdump, 

time 2*tdump, time 3*tdump, etc., where tdump is specified in enosw.parms. For example, 

the u-velocity at time t = 0 is output with the statement, 

write(20,rec=l)   ((u(i,j,0)/h(i,j,0),  i=0,M-l), j=0,N-l) 

(Recall that the variable u(,,) holds the flux U = uh.) 

A log file, enosw.log, is also created to catalogue the input parameters that were 

specified for the model run. An example is, 

(M,N)=(100,100)       (Q1,Q2)=(3,3)      dt=0.01000 

(tO,tmax,tdump)=( 0.000,200.000,50.000) 

L*(km)= 10. U*(m/s)= 10. D*(m)=500. 

f0= 0.100 r=0.0000 Fi= 1.000 

Grid:uniform 
(dx,dy)=( 0.100, 0.100) 

Smoothing coefficients:  1. 38.  1. 

R0E-EF  HYBRID  EastWALL WestWALL YCHAR   LSTRESS STDYF0RC SMOOTH! 
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Appendix: Curvilinear Grid-Generation Program swgrid.f 

The shallow-water model is designed to approximate a solution on a user-specified orthog- 

onal curvilinear grid. If the desired grid is rectilinear with uniformly-spaced grid points in 

the x and y direction, then the user need only specify Ax and Ay in addition to the number 

of grid points in each direction. If a more general orthogonal grid is to be used, the user 

must provide the (spatially-varying) grid metrics to the shallow-water model. 

One orthogonal curvilinear grid generation program, swgrid.f, is included in the model 

package as an example. In this section, we review the basics of coordinate transformations 

and provide a brief description of swgrid. f and how it interfaces with the shallow-water 

model. 

If (C, ??) are the coordinates in the orthogonal curvilinear system, then the change in the 

position vector x = (x, y) = (X(£,r)),Y((,ri)) in the Cartesian system can be written as, 

Sx = miöC, £ + m-zÖT) r) 

where mi and m.2 are the coordinate metrics given by 

- ■ W^ffl-Jw 
ru2   = *?<%)'-&*}■ dr] 

A vector (u,v) on the (x,y)-grid can be transformed to the (C,7?)-grid via, 

ü \       / Xc/{miA)   Xv/(m2A) \   / u \ 

v )      \ yc/(miß)    V(™2#) /  V v ) 

where 

A   = 

B   = 

\rnis '       \m2y )] 
1/2 

i       \m2/ 
)] 

1/2 

(38) 

(39) 

(40) 
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Similarly, a vector (ü,v) on the ((,7?)-grid can be transformed to the (x, y)-grid via, 

u \ 1 /   Yvm\A     —XvmiB  \  I  u 

v  I      X^Yr>    X^ \ -Ycm2A     Xcm2B   J \v 
(41) 

The metrics mi and m2 (Equations (38)-(39)) must be provided to the shallow-water 

model. The coordinate transformation (40) can be used during the model initialization to 

map flow fields specified on a rectilinear (e.g., north-south, east-west) coordinate system 

to the model's curvilinear coordinate system. During the post-processing phase, the inverse 

mapping (41) can be applied to visualize the model output in the rectilinear coordinate 

system if so desired. 

The grid-generation program swgrid.f was originally developed by Wilkin and modified 

successively by R. Signell, by R. Samelson and by A. Rogerson. In short, the user specifies 

the desired boundary and provides an initial distribution of grid points along the boundary. 

The orthogonal curvilinear grid is obtained by iteratively applying a conformal mapping 

algorithm to the gridded domain. Detailed aspects of the algorithmic approach and the 

implementation will not be discussed here. Rather, a brief description of how to use this 

program is provided below. 

Several parameters must be set in swgrid.f. The first two specify the grid size and are 

set by the parameter statement 

parameter  (L=100,M=200) 

located at the head of program swgrid and the subroutines spline, cofx, and cofy. The 

third is the number of iterations to be performed to obtain the grid, set by the data state- 

ment 

data itmax /15/ 

in the first portion of swgrid. Following immediately after the data statement for itmax is 

the data statement 
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data kb2/4/ 

This parameter specifies which of the four boundaries will maintain its original distribution 

of grid points after the mapping. 

The user specifies the geometric shape and the initial distribution of grid points for the 

western, southern, eastern, and northern boundaries within subroutine zl, and entry points 

z2, z3, and z4, respectively. The boundary position data are stored in a single complex- 

valued vector variable z(i)=(x(i),y(i)), which holds the position of the grid point at 

the northwest corner of the domain in z(l) and the remaining data points in successive 

storage locations, proceeding counter-clockwise around the boundary. In subprograms zl, 

z2, z3, and z4, the boundary data are defined parametrically through the variable s which 

varies from zero to one along each portion of the boundary. In the current setup, the 

domain is 30 units long in the x direction and 50 units long in the y direction (variables 

XL and YL in subroutine zl) and is discretized into L x M = 60 x 100 grid points. The 

eastern boundary consists of a series of bends; phi(j) are the bend angles, measured from 

due south, ybend(j) are the y positions of the bends, rc(j) are the radii of curvature 

for the bend. The formula for the eastern boundary points is obtained after a little bit of 

trigonometry. The western, northern, and southern boundaries are straight. Grid points 

along the southern boundary are equally-spaced while those along the western and northern 

boundaries are clustered non-uniformly. The clustering in the current implementation is 

achieved by mapping the parametric variable s to a piecewise continuous cubic polynomial. 

Additional details are provided by the comments within the source code. 

When the deformation of the boundary is severe, the grid that is generated may not be 

orthogonal near the edges of the domain. Two additional parameters have been introduced 

at the beginning of program swgrid to clip the grid at the northern and/or southern ends 

during output, 
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parameter (jclipn=0, jclips=5) 

In this case, the grid points indexed by j < 5 are eliminated. 

Program swgrid. f produces five output files: 

• swgrid.met, a direct-access unformatted (binary) file containing the grid metrics, mi 

and 77i2, on the Sadourney C grids. The metrics on the h, u, and v grids are stored in 

records 1, 2, and 3, respectively. The shallow-water model accesses the grid metrics 

on the h grid (record 1). 

• swgrid.map, a direct-access unformatted file containing the coordinate transformation 

metrics that appear in Equations (40) and (41). The (x,y)-to-((,r)) transformation 

matrix is stored in record 1. The (C,77)-to-(a;,y) transformation matrix is stored in 

record 2. 

• swgrid.pts, an unformatted file containing the grid points (x, y) = (X(£, 77), Y((, 77)). 

• swgrid.bdry, an ASCII file containing the boundary points. 

• mesh.dat, an ASCII file to ease the plotting of the grid mesh. 

Note that for the direct-access binary files, the record length is the minimum required for 

double-precision output. 
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